Predictive models

Using Optimal Subsampling and Bootstrap in Machine Learning: Improving Model Accuracy

Introduction Machine learning algorithms have become increasingly popular in recent years as businesses and organizations look for ways to extract value from their data. However, getting accurate predictions from machine learning models is not always easy. One of the biggest challenges is reducing overfitting and bias in the models, which can lead to inaccurate predictions. …

Using Optimal Subsampling and Bootstrap in Machine Learning: Improving Model Accuracy Read More »

Exploring the Effectiveness of Imbalanced Data Correction Methods in Mixed Linear Regression Models

Introduction In recent years, the amount of data collected in various fields has grown rapidly, and machine learning algorithms have become increasingly popular for analyzing such data. However, a common issue faced when working with large datasets is class imbalance, where one class in the target variable is greatly outnumbered by the other. This imbalance …

Exploring the Effectiveness of Imbalanced Data Correction Methods in Mixed Linear Regression Models Read More »