Data Science

Understanding Multivariate Probabilistic Time Series Forecasting with Informer

Time series forecasting has long been regarded as a critical component in myriad fields, ranging from finance and economics to environmental science and engineering. Accurate predictions of future observations enable businesses, researchers, and policymakers to make informed decisions, optimize resource allocation, and mitigate potential risks. However, real-world time series data often exhibit complex patterns and …

Understanding Multivariate Probabilistic Time Series Forecasting with Informer Read More »

Improving Sequential Recommender Systems with AutoMLP: A Solution to Long/Short-Term Interest Identification

In recent years, sequential recommender systems have emerged as a popular approach for providing personalized recommendations to users. These systems take into account the order in which items are consumed by users, enabling them to identify long-term and short-term interests of users and predict their future preferences accurately. However, while sequential recommender systems have proven …

Improving Sequential Recommender Systems with AutoMLP: A Solution to Long/Short-Term Interest Identification Read More »

From Casino Games to Medical Trials: The Real-World Applications of the Central Limit Theorem

Statistics is a branch of mathematics that deals with the collection, analysis, interpretation, and presentation of data. The Central Limit Theorem (CLT) is a fundamental concept in statistics that underpins many statistical methods and analyses. It is a powerful tool for analyzing large datasets and predicting outcomes based on limited information. The CLT states that …

From Casino Games to Medical Trials: The Real-World Applications of the Central Limit Theorem Read More »

FP-Growth vs. Apriori: A Comprehensive Comparison of Frequent Pattern Mining Algorithms

Introduction Frequent Pattern Mining, also known as Association Rule Mining, is a powerful analytical process that helps in discovering frequent patterns, associations, or causal structures from various databases such as relational and transactional databases. It plays a significant role in Market Basket Analysis, a data analysis technique used by retailers to identify patterns in customer …

FP-Growth vs. Apriori: A Comprehensive Comparison of Frequent Pattern Mining Algorithms Read More »

Transform Your Recommender System with Temporal Graph Neural Networks

Introduction Recommender systems have revolutionized the way we discover new products, music, movies, and even potential romantic partners. They analyze users’ past interactions with items and provide personalized recommendations based on their preferences. However, traditional recommender systems face several challenges, such as sparsity, cold-start, and scalability. To overcome these limitations, researchers have been exploring the …

Transform Your Recommender System with Temporal Graph Neural Networks Read More »

Leveraging SENet for More Accurate Financial Forecasting

Introduction Financial forecasting is a critical component of any business’s financial planning. The accuracy of these forecasts is essential for the decision-making process in the financial industry. In recent years, there has been a significant increase in the use of machine learning algorithms to make financial predictions. One such technology is SENet, which is being …

Leveraging SENet for More Accurate Financial Forecasting Read More »

Using Optimal Subsampling and Bootstrap in Machine Learning: Improving Model Accuracy

Introduction Machine learning algorithms have become increasingly popular in recent years as businesses and organizations look for ways to extract value from their data. However, getting accurate predictions from machine learning models is not always easy. One of the biggest challenges is reducing overfitting and bias in the models, which can lead to inaccurate predictions. …

Using Optimal Subsampling and Bootstrap in Machine Learning: Improving Model Accuracy Read More »