Data Analysis

50 Years of Progress: A Look Back at the Most Groundbreaking Statistical Advances

In the last 50 years, there has been a rapid growth in the field of statistics and its applications, which has led to a vast array of groundbreaking statistical advances. These advances have had a profound impact on many aspects of modern society, including business, healthcare, science, technology, and policy. In this post, we will …

50 Years of Progress: A Look Back at the Most Groundbreaking Statistical Advances Read More »

Exploring the Effectiveness of Imbalanced Data Correction Methods in Mixed Linear Regression Models

Introduction In recent years, the amount of data collected in various fields has grown rapidly, and machine learning algorithms have become increasingly popular for analyzing such data. However, a common issue faced when working with large datasets is class imbalance, where one class in the target variable is greatly outnumbered by the other. This imbalance …

Exploring the Effectiveness of Imbalanced Data Correction Methods in Mixed Linear Regression Models Read More »

From Outliers to Inliers: Robust Non-Parametric Regression with Median-of-Means

Regression analysis is a widely used statistical tool for predicting a continuous dependent variable based on one or more independent variables. However, traditional regression methods, such as linear and polynomial regression, can be sensitive to outliers and make incorrect predictions if the assumptions of normality and homoscedasticity are violated. To address these limitations, researchers have …

From Outliers to Inliers: Robust Non-Parametric Regression with Median-of-Means Read More »

Optimizing the Accuracy of Time Series Predictions: An Introduction to the Forward-Backward Algorithm

Introduction In today’s fast-paced world, businesses, industries, and organizations rely heavily on data-driven decision making. The ability to predict future trends and patterns in data can be incredibly valuable for forecasting and planning. One of the most important areas of data analysis is time series analysis, which involves studying and understanding sequential data over time. …

Optimizing the Accuracy of Time Series Predictions: An Introduction to the Forward-Backward Algorithm Read More »

Multiple Hypothesis Testing: How to Balance Power and False Positive Rate

Introduction In the field of statistical analysis, multiple hypothesis testing is a common problem that arises when a researcher conducts multiple experiments or tests simultaneously. The problem arises because the more hypotheses that are tested, the higher the probability of obtaining a false positive result. In this blog post, we will discuss the concept of …

Multiple Hypothesis Testing: How to Balance Power and False Positive Rate Read More »

Multiple Imputation for Propensity Score Analysis with Covariates Missing at Random

Introduction Missing data is a common problem in statistical analysis, and can lead to biased or inefficient estimates if not handled properly. One method for dealing with missing data is multiple imputation, which involves creating multiple plausible values for the missing data and analyzing each imputed dataset separately, before combining the results. In this blog …

Multiple Imputation for Propensity Score Analysis with Covariates Missing at Random Read More »